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We study the dynamic evolution of a bouncing ball on a vibrating platform, such as the membrane of a
loudspeaker, as a function of its coefficient of restitution a and demonstrate primarily that the presence
of chaos in this system is by no means inevitable and its development is by no means obvious. Indeed,
we show that generic trajectories starting under experimental conditions terminate in a region of
“chattering” (where the memory of earlier dynamics is lost), before repeating themselves in a periodic
way. As a consequence, except possibly for the strictly elastic case (a=1), the evolution to chaos via a
period-doubling route will not be observed. Our arguments are corroborated by numerical studies, con-
cerning especially the divergence of the mean period of generic trajectories as the elastic limit is ap-

proached (a—1).

PACS number(s): 46.10.+z, 03.20.+1, 05.45.+b

I. INTRODUCTION

The dynamical behavior of a bouncing ball on a vibrat-
ing platform, e.g., a loudspeaker membrane, has, since
the seminal work of Fermi [1], intrigued physicists and
been a fecund source of theoretical and experimental in-
vestigations [2—14]. Since in practice such balls are nei-
ther perfectly elastic nor perfectly inelastic, one can safe-
ly assume that the bulk of the experimental literature at
least concerns the case where the coefficient of restitution
a takes values between O and 1. It is therefore astonish-
ing that there has hitherto been a rather cavalier treat-
ment of the dynamics of the ball with finite restitution, in
the ubiquity of observed or calculated ‘chaotic”
behavior, since, as we show in this paper, generic trajec-
tories are periodic.

Indeed, we find that there is a “locking” region in phase
space, where the ball is relaunched to recommence its
earlier trajectory, and predict therefore that the period-
doubling route to chaos should not be observed.

In earlier theoretical treatments, all of which have been
based on (variants of) the Chirikov ‘“high-bounce” ap-
proximation [4], chaos was “‘seen” to be present for the
partially elastic bouncing ball, as well as for the com-
pletely inelastic bouncing ball, simply because the motion
of the platform was ignored. It is easy to see (as we
demonstrated in earlier work [15]) that this approxima-
tion leads to erroneous results for the completely inelastic
bouncing ball. The gist of our argument is as follows:
when the ball lands in the absorbing region of the plat-
form cycle (where it is kinematically impossible for it to
be launched upwards), it “sticks” to the platform because
a is strictly zero. It is then relaunched in the beginning
of the transmitting region of the next cycle, with zero rel-
ative velocity. This periodic relauching under identical
kinematic conditions and the resulting interruption of the
period-doubling sequence are consequences of the com-
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plete inelasticity of the ball.

This line of reasoning might suggest that when «a is not
strictly zero, i.e., when the ball is able to rebound in an
erstwhile absorbing region and possibly “hop’ across to a
transmitting region, the period-doubling sequence might
continue to evolve, resulting in chaos. The point of this
paper is to state that this is not the case, except possibly
at a=1 (in this elastic limit, the energy of the ball is un-
bounded, and the analysis of the dynamics is difficult for
obvious reasons). Although it is possible for the ball with
finite restitution to hop its way out of many absorbing re-
gions, we show that generic trajectories end in complete
chattering, or locking, i.e., the ball hops infinitely many
times in an absorbing region without ever getting to a
transmitting region, since the hop amplitudes decay ex-
ponentially. Thus the period-doubling route to chaos is
never observable for generic trajectories for any a less
than 1.

This still leaves outstanding the question of why chaos
is “observed” experimentally. The answer is that the
periodic trajectories mentioned above are very long and
complicated, especially near the elastic limit (¢—1). Itis
thus very plausible that in experimentally observable
times neighboring trajectories will diverge from each
other’s vicinity, so that some manifestation of chaos, such
as a positive Lyapunov exponent, will be observed. Al-
ternatively, a sequence of such periodic trajectories, when
juxtaposed, will be difficult to distinguish from a chaotic
trajectory, at least from an experimental point of view.
Finally, since real balls may not always be characteriz-
able by a single scalar coefficient of restitution, it is possi-
ble that complicated tensorial aspects to their elastic
properties could account for experimentally observed
chaos to date.

The plan of this paper is as follows. In Sec. IT we write
down the dynamical equations for the ball with partial
elasticity. We proceed to analyze local aspects of the ex-
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act map such as fixed-point trajectories and their stability
and the evolution of the period-doubling cascade. We
show also that in the vicinity of fixed-point trajectories,
our rescaled dynamical equations are equivalent to the
Hénon map. Next, in Sec. III we do a global analysis and
state our rather surprising results for this system. We in-
vestigate chattering and locking regions, the conditions
under which chaos is observed, and the nature of a gener-
ic trajectory, thus building up a physical picture of the
bouncing ball with finite restitution. From a quantitative
point of view, we obtain a “critical” law of divergence of
the mean number of collisions in a period and of its dura-
tion, as the elastic regime is approached. In the discus-
sion section (Sec. IV), we summarize our results and men-
tion future directions of research.

II. LOCAL ANALYSIS

The system under investigation consists of a ball on a
harmonically vibrating platform; the position of the latter
at time ¢ is given by

s(t)= A sinwt . (2.1)

The partially elastic collisions of the ball with the plat-
form are described by a restitution coefficient 0<a <1
(the limit case @ =0 corresponds to the completely inelas-
tic regime, considered in our previous work [15]) and the
gravitational acceleration g provides the ‘“restoring
force” on the ball in flight.

A. Dynamical equations

Throughout this paper, we will use dimensionless units,
measuring time in units of the period T=2m/w of the
platform’s oscillations and accelerations in units of g /2.
In keeping with this, velocities will be expressed in units
of 7g /w and positions in units of 272 /w?. The rescaled
quantities representing the motion of the platform are
then 7=t/T=wt/(27w) and S=w% /(2w*g). Equation
(2.1) thus reads

r .
S(r)=——sin(277) . (2.2)
2
The reduced acceleration I'= Aw?/(7g) and the restitu-
tion coefficient a are the two dimensionless control pa-
rameters of the problem.

The height of the ball X(7) during its flight between
any two ball-platform collisions is described by the fol-
lowing parabolic equation:

X(1)=Xq+Volr—19)—(1—7)?, (2.3)

where 7 is the last time at which the ball was launched
from the platform, X,=S(7y) and
ds

V0=W0+—

dr, =W,+T cos(2m7y) ,

(2.4)
where W, > 0 is the relative “takeoff”” velocity of the ball.

The next collision time is the smallest solution 7, > 7,
of A(7)=0, where
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A(T)=X(1)—S(7)
_ I . .
™ [sin(277y) —sin(271)]
+[Wo+T cos(2mry) [(1)—7) — (71— 1) 2.5)
is the relative height of the ball above the platform.
The relative “landing” velocity
—y__dA
Wi ~dr Wo—2(1,— 1)
+TI'[cos(2m7y) —cos(277,)] (2.6)

is negative, since we have A(7)>0 during the flight, i.e.,
7o <7 <7,. Because the collision is partially elastic, i.e.,
O<a<1, the ball bounces back immediately at =7,
with a positive relative velocity given by
Wi=—aW{") . 2.7
The above equations (2.5)-(2.7) define an implicit
dynamical mapping

T: (1, Wo)—(1, W}), (2.8)

where a and I" are two dimensionless control parameters.
A forward orbit {(7,, W, )}, describing one possible his-
tory of the ball, can be generated by iterating the above
dynamical equations, starting from arbitrary initial con-
ditions. It will be convenient for some purposes to fold
the time variable 7 modulo the unit period of the plat-
form, considering thus the reduced phase space
(0<7=<1,W>0), which has the topology of a half-
cylinder.

The rest of this section is devoted to a local analysis of
the dynamical equations derived above, with a>0, in-
cluding the study of fixed-point trajectories, period-
doubling solutions, and their stability.

B. Fixed-point trajectories

A fixed-point trajectory is such that the time of flight
of the ball is an integer number m = 1 of platform cycles.
With the notation (ry=71,,W,=W,), we have
(ry=7,+m,W,;=W,). The motion is then periodic, i.e.,
the orbit is described by (r, =7, +km, W, =W,). We
also introduce the value of the absolute velocity as
Vo=V,. Equations (2.5)-(2.7) easily yield the condi-
tions
—a 2a

m, *=1+am, V,=m .

_ 1
r cos(277'¢,,)——1 o

(2.9)

This result characterizes all fixed-point periodic orbits,
with the following qualifying remarks: First, only stable
trajectories have a chance to be observed. The study of
the stability of fixed-point solutions will be presented
shortly. Second, a transmission condition, to be derived
in Sec. III B has to be imposed in order to ensure that
there is not a premature ball-platform collision in the
launch cycle. Let us anticipate that this condition reads

W>W, (1), (2.10)
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where W ,(7) will be determined in Sec. III B.

In order to know whether the fixed-point solution (2.9)
is linearly stable, we insert perturbed initial values of the
form (rq=7,+87y, Wy=W,+8W,) into the dynamical
equations (2.5)—(2.7). To linear order, the perturbations
after one period read

6my | 1—(1+a)o (1+a)/2 879
3W, | [2a(l+a)o(c—1) a*—al(l+a)s | [8W, |’
(2.11)
with
o=mxT sin(27w7,) . (2.12)

The fixed-point periodic trajectory is stable if and only if
both eigenvalues of the above matrix are smaller than
unity in absolute value. We thus get the following condi-
tion:

2
0<o<2Uta) (2.13)
(1+a)
i.e., in terms of ',
1 1 o 2a+er P17
—Qa —Q a
<< |- = .
1+a 1+am]+ m(1+a) }
(2.14)

The stable fixed-point orbits build therefore equally
spaced bands, one for every integer period m, situated
around I'=(1—a)m /(1+a). For m large, the bands get
narrower, since their widths shrink according to

_2(1+a??
m(1+a)(l—a)m

The region of stability of fixed-point orbits for finite a is a
continuous deformation of the situation in the completely
inelastic case (a¢=0), described in Ref. [15].

When a fixed-point solution becomes unstable, it can
undergo a complete or an incomplete period-doubling
cascade. This question is complicated by the existence of
a transmission condition, as stated above. A full analysis
of the period-doubling sequence will only be performed in
the large-I" regime, where the dynamical mapping can be
simplified as explained below.

(2.15)

C. The scaling region: Connections with the Hénon map

The dynamical mapping (2.8) can be greatly simplified
in the large-m regime, in the vicinity of the fixed-point
trajectories described above. This can be shown by per-
forming the following 1/m expansion of the dynamical
variables around the fixed-point solution (2.9)

1—a Y
= m ,
1+a m(1+a)(1—a)m
_ y
=y
27%(1—a? ’
m(1=a’m (2.16)
V=m+— 2 +oee
T (1+a)(l—a)m
_ 2a Utaz+p?/2—y

W=
1+a m(1+a)(l—a)m
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These expansions involve two rescaled dynamical vari-
ables y and z, whereas y is a rescaled control parameter.
Powers of (1+a) have been inserted for further conveni-
ence. The expression for W is a consequence of the other
definitions.

The dynamical equations (2.5)-(2.7) become, when
expanded to first nontrivial order for large m, the follow-
ing polynomial map in two variables:

y'=ytz
zZ'=y+a’z—(y+z)?/2 |’

y
z

P: — 2.17)

where a and y are two control parameters.

We also have to determine the rescaled form of the
transmission condition (2.10). By inserting the expansion
(2.16) into Eq. (3.10), it can be shown that the upper criti-
cal value of 7, for which 6=, and hence W , =0, is very
close to =1 for large m. More precisely, it corresponds

to
ye=(1+a). (2.18)

Furthermore, the scaling form of the limiting velocity
W , reads
0, y2y.
3(y.—»)
872 (1+a)(1—a)m

W, = (2.19)

b ySyc’

The role of the transmission condition (2.10) will be dis-
cussed in Sec. I D.

It is worth noticing that the transformation P can be
recast, by means of an inhomogeneous linear change of
coordinates, in the form of the celebrated Hénon map
([16]; see Ref. [17] for a review)

X X'=1—aX*+Y
H: v ly=px , (2.20)
with the following values of the parameters:
a=y/2—(1+a?®?*/4, b=—a>. (2.21)

A peculiarity of the present case concerns the unusual
sign of the Jacobian of the map H, which reads

J=§(l’—z~)—=a2>0, (2.22)
a(y,2)
whereas the Hénon map has usually been studied for pos-
itive values of the parameter b, so that J=—54 <0.

D. Period doubling, chaos, and their limitations
1. The completely inelastic case: a=0

Let us first look at the case of completely inelastic col-
lisions. In this situation (a¢=0), the relative velocities W
vanish identically. Equation (2.16) therefore implies
z=y —y?/2, and the rescaled map (2.17) becomes the fol-

lowing quadratic map in one variable:
Py: y—y'=y+y—y?/2, (2.23)

on which the transmission condition (2.10) imposes the
inequality
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y>1. (2.24)

Indeed, the first alternative of Eq. (2.19) has to be obeyed,
and we have y, =1 for a=0. Equivalent results were al-
ready presented in our previous work [15].

The transformation (2.23) can be brought to either of
the following canonical forms for quadratic maps (see
Ref. [18] for a review):

Pi: u—u'=u*+tc withc=1—y/2, (2.25)
via the change of variable z=(1—y)/2, and
Py x+>x'=1—px? with u=y/2—1, (2.26)

via the change of variable x =(y —1)/(y —1/2).

It is well-known that the quadratic map (2.23), (2.25),
and (2.26) undergoes a sequence of period-doubling bifur-
cations [19].

In the present case, we shall say that an attractor, such
as a 2*-cycle {y;,.. .y,k}, is visible if (i) the attractor is
linearly stable and (ii) it is entirely contained in the al-
lowed region of y space, i.e., min {y;: 1< <2%}>1.

It turns out that the visible attractors of the map (2.23)
are the following: (i) a fixed point y =(2y)!/?, stable for
Y1=0<y <y,=2 and visible for 1/2<y <2; and (ii) a
two-cycle (y;,y,)=2+[2(y—2)]'/?, stable for y,=2
<y <v,=3 and visible for 2 <y <3. We notice that the
domain of stability of the fixed point matches the more
general expression (2.14).

2. The case a<<1

We now extend the above results to small nonzero
values of the restitution coefficient a. The expansion
(2.16) of the relative velocity W suggests that a only
enters the problem through the following scaling vari-
able:

B=al?, (2.27)
in the large-TI" regime, which is in any case the only re-
gime we will examine in depth.

We are thus led to consider the scaling region
(<< 1,IT'>>1), keeping the variable 3 fixed. In this situ-
ation, the 2z variable can still be ignored, since
z=y—y2/2+0(a?), by virtue of Eq. (2.17). Further-
more, the dynamics of the remaining y variable is approx-
imately given by the a=0 map P,, introduced in Eq.
(2.23).

The only nontrivial place where the scaling parameter
B enters is the transmission condition. Relative velocities
can be approximated by the term of order m in the ex-
pansion (2.16). Since W , is given by Eq. (2.19), the in-
equality (2.10) assumes the simple form

y>y:.(B), (2.28)
with
Y BY=1—4m(B/D, ie., f=——(1—p.?. (2.29)
167

This condition generalizes the inequality (2.24) to
nonzero values of a in the scaling region.
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FIG. 1. Plot of the attractor of the quadratic map P, of Eq.
(2.23), acting on the y variable in the completely inelastic case,
against the rescaled control parameter y. A few remarkable
values of ¥, discussed in the text, are indicated.

When B is increased from zero to larger and larger
values, more and more of the period-doubling bifurca-
tions of the map P, become visible. Figure 1 illustrates
this discussion. Besides the fixed point and the two-cycle,
which are already visible in the completely inelastic
case (B=0), (@) a four-cycle is stable for
¥Y4=3<y <y3=3.236198 and becomes visible for
B>B,=3(V2—1)?/(167*)=0.003 259 5; (ii) similarly, an
eight-cycle is stable for ¥3=3.236198<y <76
=3.288092 and becomes visible for 3> B,=0.018 880,
and so on; (iii) the period-doubling cascade accumulates
onto the Myrberg point, situated at y,=3.302 310 [18].
The corresponding aperiodic attractor extends from
Ymin=—0.124161 to y .., =3.802 310.

The first point at which an aperiodic orbit, i.e., chaos,
can be observed is therefore B=pB,=3(1—y..)?/
(1672)=0.024 008. This last number can be interpreted
as follows. The partially elastic bouncing ball can only
exhibit chaos when the restitution coefficient is large
enough, namely for 8>3, or

0.024 008

@> TR

in the large-I' regime. Notice that the condition (2.30)
involves a very small numerical factor.

It will, however, become clear in the following that this
route to chaos via a period-doubling cascade is very un-
likely to be observed; this is because of the existence of a
locking region in phase space, in which trajectories lose
their memory. We will address these issues in the next
section.

> (2.30)

III. GLOBAL ANALYSIS

We now turn to the analysis of some global aspects of
the dynamics of the partially elastic bouncing ball, such
as the typical fate of a generic trajectory. This discus-
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sion, to be presented in Sec. III D, requires some prelimi-
nary technicalities which follow.

A. The volume of phase space

The relative velocity W as well as the duration
87=1,— 7, of flight of the ball remain bounded as long as
the restitution coefficient a is less than unity. We will
give an elementary proof of this fact and obtain rough es-
timates of the maximal values W_,, and 87,,. On the
other hand, as mentioned earlier, we can consider a re-
duced phase space (0=<7=1,W >0), defined by making
the time variable 7 compact. The dynamically accessible
portion of this phase space has therefore a finite volume
of order W,,,.
A rough upper bound W, of the relative velocities
can be derived as follows. We put simple bounds on the
dynamical equations (2.5)-(2.7), by replacing the tri-
gonometric lines by their extremal values *1,

Wl Sa[z(Tl—To)_Wo+2F] ’ (3.1a)
Alr)) ST /7+ Vo1, —70)— (1y—70)%, (3.1b)
Vo<W,+T . (3.10)

For fixed initial conditions (74, Wy), we can use Egs.
(3.1b) and (3.1c) to derive an upper bound for A(r,), in-
volving W,, and then use Eq. (3.1a) to get an upper
bound for W, namely

W, <a{30+[(W,+T)*+4r /7]'?} . 3.2)

After a transient regime, i.e., for k large enough, the rela-
tive velocities W, are bounded by the fixed-point value

W nax defined by setting W, =W,=W_,  in Eq. (3.2).
We thus get
W o =7 % {(3+a)l+[4(1—a®)T /m
—a
+(14+3a) 121172} . (3.3)

We can then derive from Egs. (3.1) a bound on the dura-
tion 87,,, of a ball’s flight, as the solution of the quadra-
tic equation

872 — (W +T)87

max max

—I'/7m=0. (3.4)

We obtain after some algebra

0T = 1

=_— 2
max 2(1__01){(1-+—30t)I‘+[4(1 a’ )T /w

+(143a)T?]'?} .

(3.5)

The above expressions (3.3)—(3.5) are only meant as
rough guides. Nevertheless, their large-I" behavior,
namely

4a 1+3a
I, 8mpa~= —a

W _ =~

max ~

r, (3.6)
l—a
yields simple estimates which capture the essential ex-
pected features. Both estimates are proportional to T'
and diverge as the elastic limit is approached (a—1).

Moreover, W, vanishes proportionally to « for small a.
Absolute prefactors, such as the constant 4 in W, , are
certainly overestimated.

B. Absorbing and transmitting regions

One of the main outcomes of our previous work [15]
was that one cycle of the platform could be decomposed
into a transmitting and an absorbing region, according,
respectively, to whether or not long flights (with duration
71— 1o~ T for large I') were allowed.

This concept is generalized as follows in the present
case (a>0). For any takeoff time 0<7,<1, there is a
limiting relative velocity denoted by W ,(7,), such that (i)
for Wy < W ,(7y), there is an “early” ball-platform col-
lision either in the launch cycle or in the beginning of the
next one, i.e., 7y = 2. This is the absorbing region of phase
space; and (ii) for Wy > W (1), the ball is launched with
a strong enough impulse that it can overcome the next
barrier, viz. that of the platform’s largest upward oscilla-
tion which takes place around 7= 3. This is the transmit-
ting region of phase space.

In the transmitting region, and in the large-I" regime,
the dynamics of the ball can be described by the so-called
high-bounce approximation, which consists of neglecting
the initial positions of the ball and of the platform (i.e.,
the sine functions) in the expression (2.5) of their relative
position [4]. We thus obtain the following simple and ex-
plicit formula

Ty=T79+ Wo+T cos(2mry) . (3.7

Let us now determine the limiting initial condition
W =W ,(7,) which demarcates between the transmitting
and absorbing regions of phase space. Let 6(7,) denote
the value of 7; corresponding to this marginal situation,
for which the platform and the ball have ‘“‘grazing” or
tangential trajectories at 7=6, namely

A= [sin(27ry)—sin(270)]
2T

+[W 4 +T cos(2m7) (6 — 1) —(6—7()*=0,
aa _
de

These two equations determine 6(7,) and W ,(7,) for
% < To <1.
For large I', we have the somehow simpler expression

W 4 =[cos(2m0)—cos(271y) T, (3.9

(3.8)
W 4, —2(0—71y)+TI'[cos(2mry) —cos(276)]=0 .

whereas the equation for 8(7,) remains implicit, namely

sin(277g) —sin(270) +27(0 —14)cos(27w0)=0 . (3.10)

The variations of the ratio W, /T" are shown in Fig. 2.
This quantity vanishes linearly as 7,— + and quadratical-

ly as 7,— 1, according to
W, ~3ir*(1—71)T (3.11)

in agreement with the y — — o behavior of the rescaled
form (2.19) of the transmission condition.
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FIG. 2. Plot of the ratios W ,(7)/I" and W, (7)/T, against
the collision time 7, for « <<1 and I" >>1. The absorbing (lock-
ing) region of phase space corresponds to relative velocities
smaller than W, (W,).

The connection with our previous work [15] concern-
ing the completely inelastic case is made as follows. For
a=0, the relative velocities W, vanish. The ball can
therefore only be launched from the platform for
W 4(19)=0, i.e., wI sin(277y) > 1. This last condition is
equivalent, as it should be, to requiring that the relative
acceleration at takeoff is positive, i.e.,

d?A
dri

If this condition is not obeyed, the ball waits on the plat-
form until the beginning of the next cycle. As a conse-
quence, for a=0 and in the large-I" regime, the cycle
0<7y<1 of the platform is separated into two regions,
namely (i) 0<7,<+—when landing in this transmitting
region, the ball is immediately relaunched; a long flight
results with a duration proportional to I', which can be
estimated via the high-bounce approximation (3.7); and
(ii) 4+ <79 < 1—when landing in this absorbing region, the
ball will not perform a long flight, because it will either
wait to be relaunched in the next cycle, or will hop i.e.,
will have a flight time of less than a cycle.

The situation in the partially elastic case is not qualita-
tively different. The absorbing region is now the area of
phase space defined by the inequality W < W (7).

(ry=m79)=2[7wT sin(27r1y)—1]>0 . (3.12)

C. Chattering and locking

For any nonzero value of the restitution coefficient «,
the ball will not sit still on the platform if it lands with a
positive relative velocity. Nevertheless, if it lands deep
enough in the absorbing region of phase space, i.e.,
W << W 4, it will perform a large number of smaller and
smaller bounces. We refer to this kind of motion as
chattering.

Chattering will be said to be complete if the ball per-
forms an infinity of smaller and smaller bounces in a
finite time. This is possible because the relative velocities
W, are approximately reduced by a multiplicative factor
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of a at each collision, so that the time intervals between
collisions can follow a convergent geometrical progres-
sion.

Complete chattering, or locking, will take place if the
relative velocity W, is smaller than some threshold value
W, (1), depending on «a and I' in a complicated fashion.
Here again, we will restrict the analysis to the large-T" re-
gime. The variations of W, will be studied analytically
in the limits a—0 and a— 1 and numerically in the gen-
eral case.

For a—0, the locking condition is equivalent to re-
quiring that 7, is less than the beginning of the next cycle,
which is the first point at which the ball can be re-
launched with an upward acceleration. By inserting
;=1 into Eq. (2.5), we obtain

sin(277)

WL(TO)z b COS(27TT0)+“2‘;(—1:0—)'

(T'>1,a<<1). (3.13)

There can only be locking if W; >0, namely for
Tmin <7 <1, where 7, =0.284852. This value is only
slightly above the value , used throughout in Ref. [15]
for the sake of simplicity, and recalled at the end of Sec.
III B. It is also worth noticing that the value of W, in
the a—0 limit is only slightly below the value of W ,.
For instance, for 7y=1, we have W /I'=1, whereas
W, /T=1+cos(27m6)=1.217234. As 71,—1,W, van-
ishes quadratically, just as W 4 [see Eq. (3.11)], but with a
prefactor  instead of 2. Figure 2 shows a plot of both
ratios, viz. W, /T and W, /T, in the large-I" and small-
a regime.

In the opposite regime (a—1), a completely chatter-
ing, or locking, trajectory consists of many short hops,
with small relative velocities, taking place in the portion
of the absorbing region which has negative relative ac-
celerations, i.e., 1/2<7<1. In order to describe such a
trajectory in an approximate way, we linearize the
dynamical equations as follows:

Wi

> Wi, =aW, .
oI sin(277; ) k1 Ak

TRal— T — (3.14)
To leading order as a—1, Eq. (3.14) can be solved by
going to the continuum limit, i.e., by replacing the
difference by a differentiation with respect to a continu-
ous variable k. We thus obtain

Wo
AT
with A=—Ina~1—a. The limit W, (7,) of the locking

region corresponds to having 7, —1 as k— . We thus
obtain

cos(2mTy ) —cos(2mTy) =~ (1—e k| (3.15)

W (7o) =(1—a)T sin*(77,)

(I'>1,1—a<<l,t<ry<1). (3.16)

The “exact” threshold W, (r,) for locking can be eval-
uated, for any values of the parameters a and I', by
means of a numerical solution of the dynamical equations
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FIG. 3. Plot of the threshold velocity W, (7), below which
there is complete chattering, i.e., locking, divided by I, in the
large-T regime, for several values of the restitution coefficient a.

(2.5)-(2.7). Figure 3 shows a plot of the ratio W, /T, in
the large-I" regime, for several values of the restitution
coefficient a. It is worth noticing that the lower bound
Tmin Of the locking region increases regularly from
Tmin=0.284 852 for a=0 to 7,;,=1 as a—1, in agree-
ment with the above analytical predictions (3.13) and

(3.16).
D. Towards a global description of trajectories

1. Why typical trajectories are eventually periodic

The essential outcomes obtained so far in this section
are as follows. Consider a typical trajectory of the par-
tially inelastic ball, with 0 <a < 1. First, the relative tak-
eoff velocities W, are bounded by W,,.. We have, in
Egs. (3.3) and (3.6), provided a rough estimate of this
quantity, which describes the main features of its « and I'
dependence, and have already noted that W_,,, is a mea-
sure of the accessible volume of phase space.

On the other hand, for arbitrary values of the control
parameters a and I', there is a region of phase space,
defined as W < W, (7), which corresponds to complete
chattering, or locking. A trajectory entering this region
undergoes an infinite series of chattering bounces, in de-
caying geometrical progression. The ball will then wait
until it is relaunched at the beginning of the next plat-
form cycle, with the following initial conditions:

To= Larcsin——lw, (3.17)

W,=0 .
217 ol 0

The memory of the past history is thus entirely lost after
a “locking encounter,” just as in the completely inelastic
case [15].

We can then argue as follows, aiming for a qualitative
physical picture rather than a demonstration of
mathematical rigor. A typical trajectory will explore its
whole phase space and end up in the locking region after
a finite number of collisions. The ball will therefore be
relaunched with the initial conditions (3.17) and end up
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again in the locking region; this process will repeat itself
periodically.

We thus arrive at the unavoidable conclusion that a
generic trajectory of the partially elastic bouncing ball is
eventually periodic, after a transient regime extending up
to its first passage through locking. In other words, and
from a qualitative viewpoint, the situation in the partially
elastic case (0 <a < 1) is not too different from that of the
completely inelastic problem (a¢=0). The main quantita-
tive influence of a finite restitution coefficient is that the
mean period is lengthened so as to diverge as the elastic
limit is reached; this will become clear below. The above
heuristic argument has been checked by means of a nu-
merical solution of the dynamical equations (2.5)-(2.7).
We will deal with quantitative aspects later in this sec-
tion.

2. Modulated structure of phase portraits

It turns out that the reduced phase space is not filled
uniformly by typical long trajectories, but rather that
phase portraits show an interesting modulated structure.
By solving numerically the dynamical equations
(2.5)-(2.7), we have generated very long trajectories,
with more than 10* collisions. Figure 4 shows phase por-

FIG. 4. Scatter plot of two typical trajectories in reduced
phase space (W against 7). These “phase portraits” show the
clustering of the W values around the modulated spiraling line
(3.18). Parameters are as follows: (a) a=0.85, I'=1.005; (b)
a=0.8, ’'=1.5485.
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traits, i.e., scatter plots in reduced phase space
(0=7<1;W>0), of two typical examples of such long
trajectories.

The points, representing the successive ball-platform
collisions, are highly nonuniform in the W direction, but
they cluster around the following line spiraling around
the cylindrical phase space:

W=a[r+n+T cos(2m7)], (3.18)

where # is an arbitrary integer which takes account of the
compactification of the 7 variable. The clustering effect is
more pronounced for higher values of W, whereas the
lower part of phase space seems to be explored in a more
uniform and “random” way.

The law (3.18) can be understood as follows. The
dynamical equations (2.5)—(2.7) imply
W, =a{2(r,—19)— Wy+T[cos(2mr)—cos(2m1y)]} .
(3.19)

This formula exhibits a strong 7, and W, dependence,
whereas we are looking after an intrinsic description of
the dynamical correlations between 7, and W, irrespec-
tive of the history of the trajectory. Most of the unwant-
ed dependence can be eliminated by utilizing the high-
bounce approximation (3.7). We are thus left with the es-
timate

W, =a[r,+T cos(2mr)—71p] - (3.20)

A few comments are in order. First, the high-bounce
approximation can only be accurate when relative veloci-
ties are rather large. This is in agreement with the nu-
merical observations, namely that the modulation is more
prominent in the upper half of the phase portraits.
Second, the estimate (3.20) still involves a weak explicit 7,
dependence, which is also compatible with the observa-
tions. Indeed, for moderate values of W, the spiraling
line (3.18) shows the trend of a periodic modulation,
reflecting the 7, dependence. Furthermore, very large W
values are most probably generated by the highest
bounces, which correspond to 7o=0. This explains why
the data points lie very accurately on the spiraling line
near the top of the phase portraits.

From the estimate (3.6) of W_,,, the number of occu-
pied branches of the spiral scales as

4T

max T, (@D

n (3.21)
This law is confirmed by numerical data, even for values
of T' of order unity, such as those presented in Fig. 4.
The prefactor of the estimate in the right-hand side of
Eq. (3.21) lies between 1 and 2, i.e., it is less than half the

number (4) predicted by Eq. (3.6).

3. Quantitative statistical aspects

We end this section devoted to global aspects of the dy-
namics by presenting some quantitative statistical predic-
tions concerning the typical period of a trajectory and
comparing them with the outcome of extensive numerical
work.
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Consider a trajectory defined by the initial conditions
(3.17), with “generic” values of the control parameters o
and I'. We know that the trajectory will enter the lock-
ing region after some number N of ball-platform col-
lisions, i.e., Wy _ > W (ry_) but Wy =W, (7y). It will
then undergo locking, which involves an infinite series of
collisions in a finite time interval.

This effect makes it difficult to attach simple quantita-
tive estimates to trajectories in an unambiguous way,
such as the winding number used extensively in Ref. [15].

The period T of a trajectory is a more meaningful con-
cept, as is the number N of its collisions outside the lock-
ing region. More precisely, the period is defined as
T=1+int(7ry), where 7y is the first time for which the
ball, launched initially according to Eq. (3.17), enters the
locking region.

We will argue in a while that the distribution of the
random observables N and 7 is Poissonnian, at least near
the elastic limit (¢—1). The physical meaning of such
statistical statements in the present context is the follow-
ing. Consider an ensemble of trajectories. defined by the
initial conditions (3.17), for many different values of the
parameter I, chosen, e.g., to be equally spaced over a
narrow interval of the form [I'y—AL,I'+ATI']. The sta-
tistical predictions to be described below are meant to ap-
ply to averages over such ensembles of trajectories. The
numerical data discussed hereafter have to be interpreted
within this framework.

Let us hypothesize that there is a small probability p
that the trajectory enters the locking region of phase
space at any ball-platform collision. We will refer to p as
the locking probability, which depends a priori on a and
r.

A first very rough estimate for the locking probability
p can be derived by assuming that the invariant measure
is approximately uniform over the accessible volume of
phase space: p can then be estimated as the following ra-
tio of phase-space volumes

il (3.22)
p . = ’ .
uniform Wmax
with
W= [ Wy (ro)dr, . (3.23)
0

The above estimates yield the following predictions for
the a and I" dependence of the locking probability.

In the strongly inelastic regime (a—0), Eq. (3.13) leads
to W, ~qTI', where g =0.418 847 is evaluated by numeri-
cal integration. A comparison with Eq. (3.6) shows that
Duniform = 1 for a=gq /4~=0.10. This means that for such
values of a, the effects of the locking region become quite
similar to those of the absorbing region for a=0.

In the opposite regime where the elastic limit is ap-
proached (a— 1), the estimate (3.16) implies that pnicorm
vanishes according to

(1—a)?

P uniform = 16 4 (3.24)

independently of T".
In the following, we consider mostly large values of the
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restitution coefficient (¢—1). We assume that there is a
small stationary locking probability p, which is indepen-
dent of T at least in the large-T regime, in qualitative ac-
cord with the estimate (3.24).

This hypothesis implies Poisson statistics for the finite
number N of “strong” ball-platform collisions per period,
i.e., the collisions which take place before the ball enters
the locking region. Indeed, neglecting any dynamical
correlations between different collisions, we can estimate
as follows the probability 7, that a trajectory enters the
locking region exactly at the Nth ball-platform collision:

ay=p(1—p)N "l=pexp(—Np) . (3.25)

As a consequence, the average and the root-mean-square
value of the number of collisions per period outside the
locking region read

hd 1
Navzz NT)’N~'~,
N=1 p

172

Nrms = ~ (3.26)

2]

2 __A72
ENFN Nav
N=1

o [

Moreover, since a finite proportion of the flights can be

described, at least in a qualitative way, by the high-

bounce approximation (3.7), we can infer that the period

‘T of the ball’s history possesses the same kind of distri-

bution as NT in the large-T" regime, namely
T o= T ms= <l , (3.27)

p

where c is a constant.

We have performed extensive numerical checks of the
above heuristic ideas; we have measured the mean and
the rms value of the period 7 of trajectories started with
the initial conditions (3.17), with equally spaced values of
I" in the interval [I'—AT',I'j+AT'], for AT=0.5 and
I',=7.5,15. Our results are illustrated in Fig. 5, which is

T T T
10 4
4 T=75 (av) |
8t & T=75 (rms)

3 = I=15 (av)

§ 6 r=15 (rms) -
= ]
ot 1
2r b

0 1 1 1
-2.0 -15 -1.0 -0.5 0

In(1-a)

FIG. 5. Log-log plot of the mean and rms values of the
period T against (1—a). Two ensembles of 10° trajectories
each, such that I'y—AI' <" <I(+AI', with AT'=0.5, and
I'o=7.5 and I'j=15, have been used for every value of a. The
straight line shows the fit of Eq. (3.28), implying that the typical
period scales as the power law T ~T'(1—a) ™", with v~S5.
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a log-log plot of the ratios 7,,/I" and 7,,/T" against
(1—a). Each data point corresponds to 10° trajectories.
The following aspects of the above discussion are corro-
borated convincingly: (1) The data points for the mean
and rms values of the period almost coincide, thus
confirming Poissonian behavior (3.25) and (3.26); (2) both
series of data fall onto one single curve once the parame-
ter I'j has been divided out; and (3) the scaling curve is
very close to being straight. The full line shown on the
plot has a slope 5, evaluated by means of a least-square fit
to the data with @ =0.60. We have thus confirmed the
main predictions of the above discussion and obtained the
following critical behavior:
To=Tis=CI(1—a)™,

rms sz, C=1.9 (3.28)

for the mean period as the elastic regime is approached.

Both the power-law form of Eq. (3.28) and its I" depen-
dence are in qualitative accord with the above heuristic
estimates. Our fitted numerical value of the critical ex-
ponent v is more than twice as large as the naive estimate
v=2 of Eq. (3.24), corresponding to a uniform invariant
measure; this confirms the heuristic statistical description
proposed above, which, rather than an accurate deter-
mination of exponents, was the object of our exercise.

We are thus left with the following physical picture of
a typical history of the ball in the nearly elastic situation
(ad—1) and in the large-I" regime. A generic trajectory
will consist of a large number [of order N ~(1—a)™ "] of
ball-platform collisions, with v=35, before it enters the
locking region; it will then become periodic in time.
The associated temporal period is typically of order
T~T(1—a)™"

IV. DISCUSSION AND CONCLUSIONS

We have presented a detailed study of the bouncing
ball with finite restitution. One of the most surprising as-
pects of our work has been to show that the dynamics of
the completely inelastic ball (¢ =0), investigated in ear-
lier work [15], remains a good qualitative indicator for
the dynamics of the ball with finite restitution up to
values of a close to 1, whereas a naive application of in-
tuition might suggest that the crossover to fully chaotic
behavior should occur for much smaller values of a.

More precisely, because of the existence of a complete
chattering, or locking, region in phase space, a generic
trajectory starting under experimental conditions, namely
at rest, will repeat itself in a periodic way. The mean
period and the mean number of rebounds have been
shown to exhibit critical behavior as the elastic limit is
approached, namely to diverge as the power law
(1—a)™". An extensive numerical study has led us to the
estimate v~=35.

As a consequence, we believe that the experimental ob-
servation of chaos [7,11], especially for a close to unity, is
due to experimental limitations to date which have made
for an insufficiently sharp distinction between long trajec-
tories which are ultimately periodic and those which
would exhibit a true chaotic evolution. Of course, the ex-
perimental distinction between periodic and chaotic evo-
lution rapidly becomes academic as a— 1, since the pre-
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dicted mean period grows beyond experimental reach. A
good experimental check of the present theory would be
an experiment performed on a “pointlike” bouncing ball
(so that one could neglect tensorial aspects in its elastici-
ty), for long enough observation times that the distinction
between truly chaotic and ultimately periodic trajectories
could be made precise.

There are, however, still many unanswered interesting
questions. Chief among those is the detailed investiga-
tion of the region of partial transmission, i.e., the region
where the ball manages to escape into the next transmit-
ting region via the process of incomplete chattering:
Wi(r)<W<W,(r). This region of phase space,
represented by the area between the graphs of W, /I" and
W , /T in Fig. 2, is rather small near a=0. This justifies
the approach of our earlier work on the a=0 case, where
we have divided phase space into a completely transmit-
ting and a completely absorbing region.

For larger values of the restitution coefficient, between
a=0.1 and a—1, incomplete chattering becomes pro-
gressively more frequent for typical trajectories, as shown
in Fig. 3. It would be interesting to see the full quantita-
tive effect of this admittedly small region of phase space.
While we do not expect a more detailed study to alter
drastically the conclusions presented in this paper, it
could shed some light on questions such as the invariant

measure in phase space and the value of the exponent v.
Also, such an investigation could help resolve the issue of
the extension of the definition of the winding number
presented in Ref. [15] and analyze in particular the
discontinuities of that quantity as a function of ¢ and T".

Another open question is that of the period-doubling
sequence. We have shown why this route to chaos is not
observable for ‘“physical” trajectories. A better under-
standing of the size of its basin of attraction in phase
space, at least for the rescaled form of the dynamical
equations, i.e., the Hénon map with negative b, would be
a worthwhile goal.

In conclusion, we have shown that the nature of the
dynamics of the bouncing ball with finite restitution is far
from simple, contrary to earlier assumptions. It is our
hope that some of the questions we have raised, especially
those relating to chattering and locking, and their non-
trivial implications for the evolution to chaos in this de-
ceptively simple system, will form the basis of detailed
theoretical and experimental work in the future.
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